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Ahstract: This paper proposes a new method for estimating a design flood based on stochastic analysis of

rainfall-runoff phenomena. Using astorage function runoff model, we derived differential equations that provide

the first four moments of discharge even if rainfall input is a non-stationary and mutuaily dependent random

variable. The validity of the proposed differential equations was cross-checked by a simulation. The results

showed that it is possible 1o obtain the probability density function of discharge from the calculated first four

moments of discharge.

1. Introduction

The planning of flood-controf projects requires a
design ffood. In Japan, the design flood s
conventionally estimated by { 1) determination of the
recurrence interval or the return period after
analyzing hydroeconomic pmblems, {2} estimation
of a design rainfait depth whose daration time is 2 or
3 days corresponding to the return period, (3)
estimation of a hyetograph (is which total rainfall
equals the above design rainfali depth), (4)
calculation of a hydrograph through the estimated
hvetograpb and a runoff model, and {3)
determination of a design flood from the
hydrograph. The procedure for steps (1) and (2) 1s
sased on stochastic theory, In step (3), past rainfall
patterns that have caused major flood events are
taken into account. However, the procedure for step
(3) includes empirical methods. This paper proposes
a new method for estimating a probability density
tuncticn of discharge. Generally, runoff models are
described by non-linear differential equations. If
ratnfal) input is o random process, these differential
equations are attributed to random differential
equations. Even if the stochastic properties of

raintall input are known. it is not easy to solve these

random differential equations and estimate the
probability density function of discharge because of
the non-linearity of differential equations.
Furthermore, observed rainfall is & non-stationary
random process and mutually dependent random
variable. In this study, we adopted a storage
function runoff model and derived differential
equations that provide the first four moments of
discharge under the condition that the rainfall input
is a non-stationary random process and mutually

dependent random variable,

2. Fundamental Theory

The runoff model considered here is 2 storage
function runoff model derived by Hoshi and
Yamaoka''. This type of runoff model is widely
used in Japan.
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5,1 storage; g, discharge;
k, and k,: slorage coelficients;
p, and p,: storage exponents
By eliminating s, from Eq. (1) and Eq. (2), the

following equation can be obtained.



L, L

Dar P g o &
It the rainfall input, r, is a random variable, the
discharge output, g, , is also described by a random
process. This paper’s direct aim is to calculate the
first four moments (g, , Gqf, Moo }Jqﬁ)of g, inEqg,
(31 Let us assume that these random variables, »
and g, , both consist of a mean and a deviation from
its mean. The signs - and “~" show the mean and
the deviatjon from its mean, respectively.
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The following approximations are used for the
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exponentiaf-type random variables, qh" and gh".
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The four coetficients, oy, Bx-' o, and Bz were
proposed by Bras and Georgakakos 2.
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Eq. (12) is obtained by substituting Bq. (4) to Eg. {7)

into Eq.(3).
i dla,g, '*Blc}h ‘i (a“qf B.d,)
J dt dr?

G, {12)
=F+F
The expectation of Eq. (12) gives Eq. {(i3).
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By subtracting Eq. (13) from Eq. (12),
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Eq. (13) and Eq. (14) are rewritten by

M*f;(r)m*g (1= (15)
d 2

v, <r>_-- Lo (V=7 (16)
dr

Where, V=koog, (170 V=kB.g, (18}

A=21% gy ¢ 0=tk < fi Lo
" Ky, k, Vi o,

kB, Bl o
fH== i, (21 ¢ (f)w;:w{k —!;{ BJ @:}(22)

I ¥ and the second, third and fourth moments of V

is calculated, it is possible 0 obtain the first four
moments of g, {(Eq. (43} to Eq. (43)). Eq. {16) is
transtormed into simultaneous differentiaf equations
by iniroducing the complex coefficients, A and
£4(1), o solve Eq. (16).
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J T imaginary unit
The following equations are abtained hy comparing
Hq. (16) with Eq. (23} and Eq. (24,
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Vand V,in Eq. (23) and Eq. (24) are defined as
complex-valuad functions. On the other hand, ¥ in
Eg. (16) is a real-valued function. Only the real
parts of V and !?1 in Eq. (23) and Eq. {24) therefore
need to be considered. The symbaol “R s used to
represent the real part. As a result, the following
equations are obtained from Eq. (23) and Eq. (24).

RVI=C (W (5)+S (W, () (3
dw,
THW, =W W+ W, W, {32
; EUE
4w,
= H WL =W W - W, (33)
r - - <
W,
=+ W, =C (DA (34)
dt :
dw, .
e W =S (07 (35)
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After raising Eq. (31) to the second , third and fourth
power and taking the expectation of each of them,
th{: second, third and fourth order moments of V,

\, . My and w,, can be derived.
o =E[IC (nW (n+§ (t}Wa(f)}E] 4m
o =BG (W, (1) +S (DWW, ()1 § (41)
o =EUC (W (S (HW, () o (42)
The relationship between the stochastic properties of
g, and V are derived by Eq. (18).
}“li’j:(kZBZ);;pqh} (44)
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If only the first term is adopted to define a,, o, Bl
and f3, in Eqg. (3) to Eq. {11, Fin, H), I(ty, C{5),
S0, Wty and W (#) are deterministic functions
and can be obtained from Eq. (15) and Eq. (19) to
Fg. (22). W, W,, W, and W, are random
functions, and the higher order cumulant function of H{#£)
must be know to obtain E{W1 ’”WE"} (#, m:integer,
a+ni=4Y. On the other hand, observed rainfall is a
discrete time series and is calcuiated from
continuous rainfall, r(f}.
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At time interval of observed rainfall
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Tanaka et al.* suggested that observed rainfall can
be described by a first order auto-regressive process.
P =pTy N, (49)

F“,’; deviation from a mean, F )
N, roise cOMpONEnt;
[ integer, p:regression coefficient
1t is possible to estimate the higher order cumulant

function of F[ such as Ew{er E{rdrﬂ,rd} and

E\fl,fl,.l‘jf } i’mm Eq. {49). It we ?OLUS on
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The teltside of Eq. (30} is known, and Eqg. (50) must
be solved to obtain Elf(t,)f(t,)l. Tanaka et al?

EAFF,)id,dr, (50)

presented the following equations.
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Where,

ot (0 { l (>0}
A= . B- _
{(* 1 (p< (-1 (p<t)

lOUip§
ot =2 & >
- NN 1’,2‘(22’[35174

Af

¢ unit with dimension, ¢; 6{f): delta function
F crf, H, 3 and s show the first four moments
of observed rainfall. By using Ey. (52) to Eq. (54),
the following differential equations for £IW,"W,"}

are obtained.
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The differential equations for EIW,"W," (n, m:
integer, n+m=4) are not expressed for a space

probtern.

3. Examination Based on Simulation

The derived theoretical equations use two
approximations: one is Eq. (6) and Eq. (7) for
exponential-type random variables (g, and g,”),
and the other is Eqg. (52) to Eq. (54) for the cumulant
functions of rainfall, #{¢. The validity of the
derived theoretical equations is cross-checked by
simulation. The simulation is carried out by directly
and numerically solving the following dimensionless
form of Eq. (3).

K:'{ig;]"
dl

Hoshi and Yamaocka "

dro"
dT*
presented the parameters

+{)=R (713

involved in the dimensionless Eq. (71}

p =06, K =———  AT=0.1,
l+p,
L 2O _[025 0sTs2
Ry [-p? G elsewhere’
i
f(N)L he —<N Aconsi, (72)
0 elsewhere
BN)=0, o= -2 -2
(M)=0, oy YN “NQJ'WF’ Hm“{;
{rectanguiar rainfail input)
5.1 0sTx2 02
R_{U elsewhere’ P2 p - K,70.1py

(triangular rainfalt input)
05427 0<Ts]
R=Y4.5-2T 1<T<2

0 elsewhere
fiV) shows the probability density function of the

, p,=0.4509, K,=0.09608

noise component in Eq. (49). Figure I and Figure
2 show the computed results. Solid lines and dotted
lines show the simulated results and the solutions of
the proposed differential equations, respectively.

These figures show good agreement with each other,

4. Estimation of Probability Density Function of
Discharge and Conclusions

It is possible to estimate the probability density
function by obtaining the first four moments of
discharge. Figure 3 shows the relationship (black

lines} between f§ and B for the trinngular rainfall



input. The standardized parameters, B and B, are

expressed by Eq. (73).
B, . B =gog  nodog) (73

Black dots show the locations of B, and B, at the
peak discharge. Figure 3 indicates tﬁat the
discharge from the storage function runotf model
described by Eq. (1) and Eq. (2) belongs to the

gamma distribution or the log-normal distribution,
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